Automatic Machine Learning (AutoML) and How To Speed It Up

Frank Hutter
Department of Computer Science
University of Freiburg, Germany
fh@cs.uni-freiburg.de
AutoML and Meta-Learning

Current deep learning practice

Expert chooses architecture & hyperparameters

Deep learning “end-to-end”

AutoML: true end-to-end learning

Meta-level learning & optimization

Learning box
AutoML as Blackbox Optimization

Random search, evolutionary methods, reinforcement learning, ...

Bayesian optimization

Blackbox optimization

$f(\lambda)$

λ
Effectiveness of Bayesian Optimization

“Sometimes, BayesOpt is only twice as fast as Random Search”
- But sometimes it is dramatically faster

Example: Optimizing a deep feedforward net on dataset adult, 7 hyperparameters
Effectiveness of Bayesian Optimization

Example: Optimizing CPLEX on combinatorial auctions (Regions 100), 76 hyperparameters
Same Pattern Occurs in RL vs. Random Search

Figure taken from „Neural Architecture Search by Reinforcement Learning“, Zoph & Le
Random search, evolutionary methods, reinforcement learning, ...

Bayesian optimization

Too slow for big data
AutoML systems

ways to go beyond blackbox optimization
Benchmark: AutoML Challenge

• **Large-scale challenge run by ChaLearn & CodaLab**
 – 17 months, 5 phases with 5 new datasets each (2015-2016)
 – 2 tracks: code submissions / Kaggle-like human track

• **Code submissions: true end-to-end learning necessary**
 – Get training data, learn model, make predictions for test data
 – 1 hour end-to-end

• **25 datasets from wide range of application areas**
 – Already featurized
 – Inputs: features X, targets y
AutoML System 1: Auto-WEKA

[Thornton, Hutter, Hoos, Leyton-Brown, KDD 2013; Kotthoff et al, JMLR 2016]

Available in WEKA package manager; ≈400 downloads/week

– **Parameterize ML framework: WEKA** [Witten et al, 1999-current]
 - 27 base classifiers (with up to 10 hyperparameters each)
 - 2 ensemble methods; in total: 786 hyperparameters

– **Optimize CV performance** by Bayesian optimization (SMAC)

 Only evaluate more folds for good configurations
 - 5x speedups for 10-fold CV

\[
\sum_{i=1}^{k} \mathbb{1}_i
\]
AutoML System 2: Auto-sklearn

[Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter; NIPS 2015]

- Optimize CV performance by SMAC

Meta-learning to warmstart Bayesian optimization
- Reasoning over different datasets
- Dramatically speeds up the search (2 days → 1 hour)

Automated **posthoc ensemble construction** to combine the models Bayesian optimization evaluated
- Efficiently re-uses its data; improves robustness
Auto-sklearn: Ready for Prime Time

- Winning approach in the AutoML challenge
 - **Auto-track**: overall winner, 1\(^{st}\) place in 3 phases, 2\(^{nd}\) place in 1
 - Close competitor: variant of automatic statistician [Lloyd et al]
 - **Human track**: always in top-3 vs. 150 teams of human experts
 - Final two rounds: won both tracks

https://github.com/automl/auto-sklearn

- Trivial to use:

```
import autosklearn.classification as cls
automl = cls.AutoSklearnClassifier()
automl.fit(X_train, y_train)
y_hat = automl.predict(X_test)
```
AutoML System 3: Auto-Net

- CV performance optimized by SMAC

- Joint optimization of:
 - Network architecture
 - Hyperparameters
Auto-Net in AutoML Challenge

[Mendoza, Klein, Feurer, Springenberg & Hutter, AutoML 2016]

• Featurized data → fully-connected network
 – Up to 5 layers (with 3 layer hyperparameters each)
 – 14 network hyperparameters, in total 29 hyperparameters
 – Optimized for 18h on 5GPUs

• Auto-Net won several datasets against human experts
 – E.g., Alexis data set:
 • 54491 data points, 5000 features, 18 classes
 – First automated deep learning system to win a ML competition data set against human experts
Reasoning across **subsets of the data**

– Up to 1000x speedups [Klein et al, AISTATS 2017]

Reasoning across **training epochs**

[Swersky et al, arXiv 2014]
[Domahn et al, IJCAI 2015]
Hyperband & Successive Halving

- **Successive Halving** [Jamieson & Talwalkar, AISTATS 2015]
 - Run N (=many) configurations for a small budget B
 - Iteratively:
 - Select best half of configurations and double their budget

- **Hyperband** [Li et al, ICLR 2017]
 - Calls Successive Halving iteratively with different tradeoffs of N and $B
Hyperband vs. Random Search

Biggest advantage: much improved \textit{anytime performance}

Auto-Net on dataset adult
Bayesian Optimization vs. Random Search

Biggest advantage: much improved **final performance**

Auto-Net on dataset adult
Combining Bayesian Optimization & Hyperband

Best of both worlds: strong anytime and final performance

Auto-Net on dataset adult
Almost Linear Speedups By Parallelization

[Falkner, Klein & Hutter, BayesOpt 2017]

8 parallel workers

7.5x speedup

Auto-Net on dataset adult
Tuning CNNs on a Budget: CIFAR-10

[Falkner, Klein & Hutter, BayesOpt 2017]

• Six design decisions
 – Depth, widening factor
 – Learning rate, batch size, weight decay, momentum

• Maximum budget per CNN run: 2 hours on a Titan X
 – Ran BO-HB for 12 hours on 10 GPUs
 – Result: 4% test error

• Maximum budget per CNN run: 3 hours on a Titan X
 – Ran BO-HB for 12 hours on 10 GPUs
 – Result: 3.5% test error
Online Adaptation of Architecture & Hyperparams

Network morphisms
[Chen et al, 2015; Wei et al, 2016; Cai et al, 2017]

Cosine annealing
[Loshchilov & Hutter, 2017]

Result: architecture search in 12 hours on 1 GPU: 5.7% on CIFAR-10
Conclusion

- Bayesian optimization enables **true end-to-end learning**
 - Auto-WEKA, Auto-sklearn & Auto-Net

- Large speedups by going beyond blackbox optimization
 - Learning across datasets
 - Learning across data subsets & epochs
 - Combination of Hyperband and Bayesian optimization
 - Online adaptation of architectures & hyperparameters

- Links to code: http://automl.org
Thanks!

Funding sources

- ERC: European Research Council
- DFG: Deutsche Forschungsgemeinschaft
- BrainLinks BrainTools
- EU project RobDREAM

My fantastic team

Other collaborators

- **UBC**: Chris Thornton, **Holger Hoos**, Kevin Leyton-Brown, Kevin Murphy
- **DeepMind**: Ziyu Wang, Nando de Freitas
- **Bosch**: Thomas Elsken, Jan Hendrik Metzen
- **MPI Tübingen**: Philipp Hennig
- **Uni Freiburg**: Tobias Springenberg, Robin Schirrmeister, Tonio Ball, Thomas Brox, Wolfram Burgard

I’m looking for more great postdocs!