Population Based Training of Neural Networks

DeepMind

7th December 2017, NIPS Metalearning Symposium
Motivation

Neural Networks require optimisation to become useful.

The success of a neural network after optimisation is determined by the joint tuning of

- Model architecture
- Data optimised over
- Details of optimisation

The correct hyperparameters are crucial to success.

Machine learning includes tuning hyperparameters: expensive, slow. Biases our model selection to favour tuneable algorithms.

Reinforcement Learning (RL) is highly non-stationary, requires non-stationary hyperparameters.
SEQUENTIAL OPTIMISATION

Performance

Hyperparameters

Model
Sequential Optimisation

Performance

Hyperparameters → Model → Training

Loss? Or validation set loss? Or other related metric?

Population Based Training
SEQUENTIAL OPTIMISATION

Choose new hyperparameters

Performance

Hyperparameters

Model

Training
SEQUENTIAL OPTIMISATION
SEQUENTIAL OPTIMISATION

A long time

Performance
Hyperparameters
Model
Training
Automate with Bayesian optimisation:
GP-UCB [Srinivas ’09], TPE [Bergstra ’11], Spearmint [Snoek ’12], SMAC [Hutter ’11]
Speed up process [Gyorgy ’11, Agarwal ’11, Sabharwal ’16, Swersky ’13, Swersky ’14,
Domhan ’15, Klein ’16, Snoek ’15, Springenberg ’16] or use parallel bandits [Li ’16].
Lead to SOTA performance e.g. language models [Melis ’17]

Or genetic algorithms:
[Young ’15, Whiteson ’06, Miikkulainen ’11, Schmidhuber]
Random Search

Choose the best

Single training run
Random Search

Single training run

Unreasonably effective [Bergstra ’12].
Easy to parallelise.
Wastes computation on easily identifiable bad hyperparameters.
Still limits to fixed hyperparameters for all of training.

Choose the best
Start with random search.

Allow workers to share information.
Workers can exploit for model selection, and explore new hyperparameters.

Genetic algorithm acting on a timescale which allows gradient based learning.
Population Based Training (PBT)

Start with random search.
Randomly initialise model weights.
Randomly initialise hyperparameters from a prior distribution.
Population Based Training (PBT)

Allow training for enough steps for learning to occur.
Population Based Training (PBT)

Exploit: each worker compares its performance to the population. If bad, then inherit the partial solution from a better worker (e.g. copy the model and hyperparameters).

- Binary tournament — random opponent, better model wins.
- Truncation selection — if in bottom 20% inherit from top 20%.
Explore: mutate the hyperparameters that were inherited to explore potentially better hyperparameters at this point in training. Mutate each hyperparameter independently.

- Perturb current value randomly by factor of e.g. 20%.
- Resample from the initial prior distribution defined.
Population Based Training (PBT)

Step: perform steps of regular gradient-based training.

Exploit: if worker is bad, then inherit better partial model.

Explore: mutate the hyperparameters that were inherited.

Repeat.
TOY EXAMPLE

- **PBT**
- **Explore only**
- **Exploit only**
- **Grid Search**

Population Based Training
Population Based Training (PBT)

Combines local optimisation with gradients with model selection and hyperparameter refinement. Two-timescale learning system.

Exploit can **optimise for non-differentiable & expensive metrics**. Allows **online adaptation** of hyperparameters.

Asynchronous and very easy to integrate with existing pipelines.
EXPERIMENTS

Demonstrate on a range of domains.

![Bar charts showing performance improvements for different domains using PBT.]

Deep RL

Supervised Learning

GANs

Speeds up learning, can use less computational resources, better final performance.
UNREAL ON DM LAB

UNREAL \cite{Jaderberg16} on DeepMind Lab 3D environments.

Automatic learning rate decay
UNREAL on DM Lab

Discovers unroll length outside initial distribution
UNREAL ON DM LAB

Discovers unroll length outside initial distribution
FuN on Atari

Feudal Networks (FuN) [Vezhnevets '16] on Atari environments.

Auto optimise the intrinsic reward

\[R_t + \alpha R^I_t \]
Transformer Networks [Vaswani '17] for WMT English-German. Optimise for BLEU score directly.

Discovers hand designed learning rate schedule
GENERATIVE ADVERSARIAL NETWORKS

DCGAN architecture [Radford '16] on CIFAR-10. Optimise for Inception score directly.

Discriminator LR annealed aggressively

Generator LR annealed slower
Algorithm Analysis

Smaller population size means higher variance results due to greedy algorithm.
Algorithm Analysis

Smaller population size means higher variance results due to greedy algorithm.

PBT on weights and hyperparameters are crucial to best performance.
Algorithm Analysis

Smaller population size means higher variance results due to greedy algorithm.

PBT on weights and hyperparameters are crucial to best performance.

Adaptation of hyperparameters better than using best found hyperparameters.
CONCLUSIONS

Algorithm for joint optimisation of model and hyperparameters
- Online adaptation of hyperparameters.
- Model selection by weight inheritance.
- Easy to integrate with existing training code.

Enhances training across many domains
- Improves performance of final models found.
- Does not change the wall clock time for final results.
- Can reduce the computational resources required.
- Good for new unfamiliar models.
- Adapts to non-stationary training problems.
- Optimise indirect performance metrics.

Future work with PBT
- Better exploit the population in non-greedy way.
- Better explore in hyperparameter space, e.g. online modelling, crossover.
QUESTIONS?